

Classical Model

- Expanded circular flow diagram
- 3 Groups: Households, Government, Firms
- 3 Markets: Factors of Production, Financial, Goods and Services
- Closed-economy, market clearing model
- Focus on "real" variables
- Long-run

Production / Output

- What determines how much the economy produces?
- (1) Factors of production (inputs into the production process)
- (2) Available technology (ability to turn inputs into outputs)
- Represent firm's production technology with a production function. Focus on two factors of production: Labor and Capital.
- Production function = indicates how many units of output can be produced by combining different amounts of inputs
- Capital $=$ the set of tools, machines, and structures used by workers in production; use K to denote the amount of capital
- Labor = the physical and mental efforts of workers / the time people spend working; use L to denote the amount of labor (typically think of in terms of a number of hours)

Production - Available Technology

- Described by the production function: $\mathrm{Y}=\mathrm{F}(\mathrm{K}, \mathrm{L})$
- Shows how many units of output (Y) can be produced using K units of capital and employing L units of labor.
- If technology changes, the production function changes. Better technology will allow more to be produced using the same level of inputs.
- F is used to describe some general relationship
- Common specific example: Cobb Douglas production function

$$
\begin{gathered}
Y=\mathrm{F}(K, L)=A K^{a} L^{1-a} \\
Y=\mathrm{F}(K, L)=A K^{1 / 3} L^{2 / 3}
\end{gathered}
$$

- Production function properties: returns to scale
- Constant returns to scale = doubling the amount of each input will double the amount of output produced
- Increasing returns to scale = doubling the amount of each input will more than double the amount of output produced
- Decreasing returns to scale = doubling the amount of each input will less than double the amount of output produced

Returns to Scale

- Typically assume that the production function exhibits constant returns to scale. Implies increasing each factor of production by a fixed percent will increase output by the same percentage.
- Checking returns to scale: multiply both inputs by some number z and compare output.
- $\mathrm{Y} 1=\mathrm{F}(\mathrm{K} 1, \mathrm{~L} 1)$
- $\mathrm{K} 2=\mathrm{zK} 1, \mathrm{~L} 2=\mathrm{zL} 1$
- $\mathrm{Y} 2=\mathrm{F}(\mathrm{K} 2, \mathrm{~L} 2)$
- If
- $\mathrm{Y} 2=\mathrm{z} \mathrm{Y1} \mathrm{=>} \mathrm{constant} \mathrm{returns} \mathrm{to} \mathrm{scale}$
- $\mathrm{Y} 2>\mathrm{Z} 1$ => increasing returns to scale
- $\mathrm{Y} 2<\mathrm{z} \mathrm{Y} 1=>$ decreasing returns to scale
- Examples ...

Factors of Production

- Factor Prices $=$ the prices per unit that firms pay for the factors of production
- Wage $(W)=$ the price per unit of Labor
- Rental rate $(\mathrm{R})=$ the price per unit of capital
- Notation:
- $\mathrm{W}=$ nominal wage
- $\mathrm{R}=$ nominal rental rate
- $\mathrm{W} / \mathrm{P}=$ real wage (measured in units of output)
- $R / P=$ real rental rate

Firms

- Assumptions:
- Economy is made up of perfectly competitive firms (price takers)
- Can describe as one representative firm
- Firms decide how much output to produce and how much of each factor to use in production. Goal is to maximize profit.
- More assumptions:
- Technology is fixed (exogenously determined)
- Supply of capital and labor are fixed
- Full resource utilization

